
Design Principles in Robot Control Frameworks

Max Reichardt, Tobias Föhst, Karsten Berns

Robotics Research Lab, Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Straße

67663 Kaiserslautern, Germany
{reichardt, foehst, berns}@cs.uni-kl.de

Abstract: Robotic software frameworks have critical impact on development effort
and quality of robot control systems. This paper provides a condensed overview on the
complex topic of robotic framework design. Important areas of design are discussed –
together with design principles applied in state-of-the-art solutions. They are related
to software quality attributes with a brief discussion on their impact. Based on this
analysis, the approaches taken in the framework FINROC are briefly presented.

1 Motivation

Robotic software frameworks have critical impact on development effort and quality of
robot control systems – especially when systems grow beyond a certain size. How to de-
sign such frameworks is an important question of research in order to make progress in
robotics – as researchers and engineers in almost every research group spend a significant
amount of time in software development and integration. Many authors have shared their
views and insights on this topic, as well as presenting their approaches and implementa-
tions. These are fundamental contributions to understanding this complex challenge. It
is, however, laborious to get a reasonably accurate overview over relevant activities in re-
search groups around the world. Many notable approaches get only limited attention in
the community and are not easy to find.

From literature research as well as from our own experience with the development of
complex robot control systems and frameworks, we attempt to answer several questions in
the scope of this paper:

• What are important areas when designing robotic frameworks?

• Which practices and principles are proposed for each of them?

• What is their impact on software quality?

Before implementing the FINROC [RFB13] framework1, we investigated and evaluated
1http://www.finroc.org

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

possible solutions for each of these areas in a systematic design process. With the expe-
rience gained from using FINROC in several projects and continuously improving it for
the first public release, we decided to do an updated and more profound analysis again –
considering also very recent work.

2 Design Principles

Quality Attributes

Execution Qualities

Safety and Reliability

Interoperability

Recoverability

Robustness and Adaptability

Responsiveness (latency)

Scalability

Performance e�ciency

Usability and Predictability

Functional Correctness

Evolution Qualities

Maintainability

Reusability

Portability

Flexibility

Extensibility

Modularity

Changeability

Integrability

Testability

Development E�ort

and Ease of Use

Areas of Design

Component Model

- Component Interfaces

- Communication Patterns

- Type System

- Component Granularity

- Runtime Diagnosis and

 Recon�guration

Runtime Model

Programming Languages

 and Paradigms

API and Application

 Constraints

Reuse Approaches

Implementation

- Internal Transport

- Network Transport

- Real-time Capabilities

- Runtime Construction

 Tooling

Principles, Methodologies, Policies

Component-Based Software

Engineering

Model-Driven Software

Development and

Domain-speci�c Languages

Lock-free programming

Visual Programming

Separation of Concerns

- "4C" Model

- Plugin Architecture

- Separate framework-

 independent code

- Transport-independence

- Avoid Framework-lockin

- Multi-Transport

- Adherence to Standards

- Slim, Concise Solutions

- Minimize Mandatory

 Dependencies

Figure 1: Overview on the complex topic of robotic framework design

Figure 1 lists quality attributes that we consider especially relevant across a wide range
of control systems for service robots [RFB13]. Furthermore, a selection of important
areas in robotic framework design is presented – as well as a range of design principles,
methodologies, and policies proposed in literature. These design decisions and principles
have an impact on many quality attributes of robot control systems. The figure illustrates
major relations. In order to keep it clear, this is a very limited selection per item. The
remainder of this chapter discusses many of these areas, principles, and relations.

2.1 System Decomposition

For system decomposition, all popular robotic frameworks follow a modular approach –
aiming at reusable software artifacts that applications are constructed from. “It is both

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

desirable and necessary to develop robotic software in a modular fashion without sacri-
ficing performance” [Bru07]. Robot controls commonly consist of software entities that
encapsulate algorithms, hardware access etc. Depending on the framework, these applica-
tion building blocks are called “components”, “nodes” or “modules”. The term “compo-
nent” is used in the remainder of this paper. Typically, components can be connected in a
network-transparent way to easily create distributed applications.

Component-Based Software Engineering (CBSE) is often named as primary approach and
some authors propose targeting a component market for robotics [BKM+07, SSL12].
There are well-defined component models that are independent from the underlying imple-
mentation [ASK08, SSL12] (fig. 2a). A notable example are “Robotic Technology Com-
ponents (RTC)” which are an OMG standard [Obj12]. OpenRTM-Aist is an open-source
implementation by the original authors [ASK08], while e.g. Gostai RTC2 is a commercial
implementation by the developers of Urbi [Bai07]. Most other frameworks have compo-
nent models that are more or less tied to a specific implementation. However, some are
independent of the middleware that is used when instantiating the components (transport-
independence, see fig. 2b) – such as Orocos [Soe06, SB11] or GenoM3 [MPH+10]. Other
solutions do not have an explicit component model at all. As Wienke et al. [WW11] argue,
this can have advantages as well. All these approaches can be found in state-of-the-art
frameworks, and the choice has an impact on, especially, the evolution qualities of imple-
mented systems.

Figure 2 illustrates further cases. Examples for (c) are MCA2 [SAG01] or Microsoft
Robotics Developer Studio3. Orca 2 [BKM+07] is an example for (d). Based on a profes-
sional third-party middleware4, it is sufficient to use this middleware in order to commu-
nicate with a robot control using any supported programming language.

Unlike other solutions, FINROC (e) includes several component types that can be added
via plugins as required. The support of third-party component models is planned. Further-
more, FINROC is network transport-independent.

Component Model

Robot Development

Environment (RDE)

Middleware/

Transport

internal

external

(a) (b) (c) (d) (e)

Figure 2: Overview on framework types. Blue indicates third-party artifacts.

2http://www.gostai.com/products/rtc
3http://www.microsoft.com/robotics
4ZeroC ICE in the case of Orca 2 [Hen04]

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

2.1.1 Component Interfaces

There are two major styles of interfaces used in robotic components: data flow and ser-
vices (or control flow). Component interfaces typically consist of a set of communication
endpoints called ports (sometimes also “publishers” and “subscribers”). Data ports pub-
lish and consume data – either directly connected forming data-flow graphs, or indirectly
communicating via topics. Service ports provide and use interfaces with remote procedure
calls or synchronous transactions as known from web services or CORBA. Most frame-
works support both.

OPRoS [JLJ+10] has additional port types for events. Other frameworks including MCA2
and FAWKES [NFBL10] provide native support for blackboards – network-transparent
shared memory.

Data flow graphs are simple and a natural fit especially for lower-level control loops.
The order of execution is inherent. Designing interfaces based on data ports is typically
straightforward. There is a realistic chance that two independent developers implement
components that can be connected and used together – e.g. in image processing. However,
for complex interaction patterns, data flow graphs are not appropriate. Supporting only ser-
vices, on the other hand, can lead to many marginally different, incompatible interfaces,
which hinders reuse. The developers of the Player Project discuss this difficulty [VGH03]
and the necessity of introducing standard interfaces. On the other the hand, the numerous
data types used in the ROS community show that this problem can also occur with data
ports.

Depending on the framework, data ports differ in supported communication patterns.
Common patterns are what Schlegel et al. [SSL12] call “push newest” and “push timed” in
SmartSoft. The former corresponds to subscription types “New” and “Flush” in OpenRTM-
aist, the latter to “Periodic”. Many frameworks support (only) one of these patterns.

• “Push timed” pushes data at a fixed rate. This behavior is typically expected from
e.g. ROS nodes.

• “Push newest” pushes new data to subscribers as soon as it is available. As different
components might access ports at different rates, most frameworks provide optional
FIFO buffers for this pattern.

SmartSoft furthermore supports “send” (one-way communication), “query” (two-way re-
quest) and “event” (asynchronous notification) [SSL12]. Instead of providing separate port
types for services and events, these patterns are utilized.

Design decisions on component interfaces influence the flexibility of a framework and its
ease of use. A lack of suitable interface patterns for certain use cases leads to workarounds
that are detrimental to maintainability and possibly also to performance of systems.

In FINROC, port types are provided by optional plugins. Currently, there are plugins for
data ports, service ports and blackboards. In a way, this makes the FINROC component
model extensible. Data ports support switching between push (newest) and pull strategy
at runtime. The latter corresponds to “query” in SmartSoft. Currently, this feature is used
in tools in order to reduce bandwidth requirements.

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

2.1.2 Type System

Which kind of data types to allow in component interfaces is another central question.
While some frameworks use an IDL (e.g. ROS, OpenRTM-aist), others allow native C++
types that meet certain criteria – e.g. Orocos requires data types to be copyable. ROS,
which is currently the most wide-spread solution in research, provides a simple custom
IDL. Most other IDL-based solutions use a third-party IDL – for instance, the Ice IDL in
Orca 2 or the OMG IDL in OpenRTM-aist and a subset in GenoM3. [WNW12] contains
a brief overview of IDLs relevant in robotics.

Frameworks that allow native data types in components need to know how to serialize
them in order to create distributed systems. It is good practice to allow framework-specific
serialization to be defined without modifying those types. C++ operator overloading or
traits are suitable mechanisms for achieving this. This way, classes from framework-
independent libraries such as, for instance, the PCL (Point Cloud Library)5 can be used
directly. Notably, this use of domain types reduces overhead for data conversion.

Being able to use specified data types in any supported programming language is a major
advantage of IDLs. Furthermore, many IDLs are standardized and well-defined. However,
an extra toolchain is required for code generation. Supporting native types, on the other
hand, allows exploiting the full power of for instance C++ for data type definition, which
can be more flexible and efficient. Data types generated by IDLs may be used as well.

Making applications based on two different frameworks interoperable is easiest if they use
the same data types or at least the same IDL. Wienke et al. [WNW12] present a solution
for interoperability with different IDLs and discuss the difficulties involved.

Again, the choice of type system has an impact on a framework’s flexibility and ease of
use. Furthermore it determines interoperability and possibly efficiency of systems – as
well as reusability, portability and integrability of individual components.

In FINROC, native C++11 data types are used in port interfaces. Notably, they do not need
to be copyable. Framework-specific serialization is defined via operator overloading.

2.1.3 Component Granularity

Another interesting question is, which granularity components should and may have. Ac-
cording to Ando et al. [ASK08], “various” component sizes need to be supported – with
data flow ports mainly being used by more fine-grained components and service ports by
the more coarse-grained ones. Small components can be easier to reuse. Furthermore,
some frameworks support creating composite components containing and encapsulating a
set of simple components - e.g. OpenRTM-aist, OPRoS or MCA2.

Generally, we believe that application developers can themselves decide best on a suitable
granularity for their reusable artifacts. A framework should not impose limits in this re-
spect. For relatively small components to be feasible, development and runtime overhead
need to be low.

5http://pointclouds.org

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

In our research on behavior-based networks, components performing simple mathematical
operations are sometimes necessary in order to join behavior components together. Exe-
cuting them in a separate thread or even process would be a waste of resources. Due to
this research, FINROC is suitable for a high number of components – possibly thousands.
Composite components (“groups”) are supported in order to keep applications structured.

2.1.4 Runtime Model

A framework’s runtime model (see [Nes07]) comprises whether execution is synchronous
or asynchronous and how it is triggered – periodically, or by events. Furthermore, it defines
how threads are mapped to components. At the one extreme, each component has its
own thread – or even process, as in ROS6 or Orca 2. Executing components in different
processes can increase a system’s robustness by preventing memory corruption from other
components. As Hammer et al. [HB13] show, this feature can be maintained with a highly
efficient shared memory implementation. On the other hand, they mention the importance
of avoiding thread clutter from too many running threads.

In other frameworks (e.g. OpenRTM-aist, MCA2), components can be assigned to threads.
For instance, this allows the execution of “tightly coupled RTCs in a single (real-time)
thread” [ASK08]. As mentioned, the option of executing multiple components by the
same thread is necessary for small components to be feasible. How many processes to
distribute components to is a trade-off between robustness and efficiency.

Synchronous implementations are typically simpler than asynchronous ones, but the latter
often lead to lower latencies – especially when many threads are involved. MCA2 and
the Player Project are examples for frameworks that trigger execution periodically only.
This has the advantage that it is simple and predictable. However, “it imposes an average
delay of a half cycle on all data [...]” [VGH03]. Wienke et al. [WW11] present an entirely
event-based solution.

As Nesnas [Nes07] states, “robotic systems require both synchronous and asynchronous
execution of different activities”. Thus, a general-purpose framework should support both
concepts.

Design choices in the runtime model have an impact especially on responsiveness, scal-
ability, robustness and efficiency of a system. In FINROC we adopted the approach from
MCA2 to assign multiple components to a thread. There is support for periodic as well as
event-triggered execution. The latter may be triggered by incoming data port values or ser-
vice calls. Apart from that, FINROC’s intra-process communication is highly optimized,
favoring putting many components into one process.

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

RT Component

OutPort n

Bu�er

OutPort 1

Bu�er

Service

Service

InPort n

Bu�er

InPort 1

Bu�er

Consumer

Consumer
Activity

State Machine

Con�guration

Interface

RTC Interfaces RTCEx Interfaces

put

provide

Proxy

Proxy

use

get

reply

put

provide

reply

get,

subscribe

push

(a) RT component

D

a

t

a

F

l

o

w

D

a

t

a

F

l

o

w

Operations Operation Callers

Service Interface

Con�guration

Interface

Properties

Input

Ports

Output

Ports

Scripting Plugin Marshalling Plugin

maps to

C/C++

functions:

-Callbacks

-Algorithms

Dynamic

functions:

- State Charts

- Program

Scripts

(b) Orocos component (“TaskContext”)

Fatal Alive

 Shutdown

Init

<<Component>>

component lifecycle

Monitoring

Threads / Mutex / Timer
Interface Execution Environment

User Space
stable interface
to other components

component
user code inside
stable interface to

to middleware and
operating system

stable interface (framework internal)

can have any number of ports but each port
is based on one of the communication patterns
(send, query, push newest, push timed, event).

abstraction of operating system resources
...

Query

Query

Send
State

Diagnose

Middleware OS

(c) SmartSoft component

Update()

Parameters

Server

Ports

Client

Ports

Inputs Outputs

(d) FINROC standard component

Sensor Input Controller Output

Controller InputSensor Output

Sense() Control()Parameters

Server

Ports

Client

Ports

(e) FINROC “SenseControlModule”

s

�ı

�a

r

�e

�u

B = (fa, fr, F)

(f) FINROC iB2C behavior

Figure 3: Components in different frameworks

2.1.5 Component Models

Figure 3 illustrates component models used in different frameworks7. Notably, they have
similarities. Data flow ports are a central element in all of them. In SmartSoft, services

6It is possible to use “nodelets” in ROS. This, however, requires the adaption of the components.
7(a) and (b) have been adapted to a similar style as (d). The author’s illustration of (a) can be

found in [ASK08], (b) on http://people.mech.kuleuven.be/˜orocos/pub/documentation/
rtt/v2.6.x/doc-xml/orocos-components-manual.html. (c) was kindly provided by Christian
Schlegel and Alex Lotz.

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

are realized using the same ports with different communication patterns. The other frame-
works have separate port types for this purpose. Some kind of configuration interface is a
common element as well8. FINROC plugins furthermore provide the “SenseControlMod-
ule” – a component type we learned to appreciate from MCA2– and a behavior component.
The latter only uses data ports. Its semantics are explained in [AKRB13]. FINROC compo-
nents are derived from the same base class, but have different kinds of interfaces, execution
semantics, and e.g. connection constraints.

2.2 Model-Driven Software Development

Model-Driven Software Development (MDSD) and Domain-Specific Languages (DSLs)
are topics which have gained increased research interest in recent years. Schlegel et
al. [SSL12] elaborately propose adopting MDSD approaches in robotics – as well as
“model-centric robotic systems”. Consequently, SmartSoft is based on model-driven con-
cepts: Components are implemented in a platform-independent way. TheMDSD toolchain
can then be used to generate instances for specific SmartSoft implementations. Currently,
there are two such implementations based on CORBA and ACE. Similarly, RT components
(see chapter 2.1) are implemented based on a platform-independent component model and
may be used with any implementation of the OMG standard. GenoM3 (“Generator of
Modules”) is another notable approach that generates middleware-specific instances of
middleware-independent component artifacts. It allows, for instance, generating compo-
nents for use in ROS. The workflow is illustrated fig. 4 from [MPH+10]9.

Component
source

.gen

Codels

GenoM3

Parser

Interpreter

Build

AST
1

2

3

Generated
Source

Generic skeleton
for middleware X

Template

Middleware

ComponentExt. Libraries

Figure 4: Overview of the GenoM3 workflow

Ortiz et al. [OSA+13] created the model-based toolchain “C-Forge”. Instead of generating
code, a model loader directly interprets the models. It instantiates and executes compo-
nents accordingly.

Model-based approaches are also suitable for creating hard real-time applications, as sev-

8The parameters interface of the iB2C component is not illustrated.
9The figure was kindly provided by Anthony Mallet.

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

eral authors write [FHC97, SSL12, OSA+13]. Apart from generating code, temporal mod-
els can be used to perform real-time schedulability analysis. Cheddar10 is a popular tool
for this purpose.

Steck et al. [SS11] show that design-time models can also be exploited for reasoning at
runtime.

Domain-Specific Languages (DSLs) are a related topic. They are special-purpose lan-
guages targeting specific problem domains, enabling the concise expression of relevant
artifacts. According to Bäuml [Bäu13], there are many areas in robotics that “[...] would
benefit from a specialized language which supports the respective abstractions also syn-
tactically and so helps to avoid a lot of boiler plate code” – examples including the “kine-
matic/dynamic/geometrical description of a robot” or a “language for complex and con-
current state machines”. Most DSLs are completely independent from a specific robotic
framework. URBIScript [Bai07] is a domain-specific scripting language for robotics that
is included in the URBI framework. It supports finite state machines, parallelism and con-
currency in a sophisticated way. aRDx [Bäu13] is a new framework particularly suitable
for integration of DSLs. Implemented in the scripting language Racket11, it allows to
“build whole towers of languages”. Due to maintenance effort, Orocos recently switched
from its own scripting language RTT to a Lua-based internal, real-time DSL [KSB10]. Its
primary use case are hierarchical state machines.

Models can be used to verify certain properties of a system (model checking). This way,
they can have an impact on various execution qualities of a system such as safety, re-
sponsiveness, robustness or functional correctness. Code generation provides chances to
improve efficiency. Regarding evolution qualities, using models can contribute to e.g.
maintainability and changeability, as well as overall development effort.

However, MDSD and DSLs can also have drawbacks. Especially the development of a
new, non-trivial meta model or DSL together with sufficiently mature code transformation
and debugging facilities, requires a huge amount of effort – possibly much more than it
saves in the end. Immature solutions are detrimental with respect to maintainability and
changeability of systems. Even mature code transformation and DSLs can complicate
debugging. The former add an additional toolchain, often depending on a platform such
as Eclipse. Efforts with a small user base might be discontinued.

In the mandatory parts of the FINROC core, we deliberately minimized the amount of gen-
erated code to optional string constants. A developer has the option to make the complete
system behavior evident from plain, versioned C++11 code. Optionally, structure of ap-
plications and composite components can be stored in a simple XML file format that can
be generated, interpreted and changed by external tools as well as the FINROC runtime
environment. In the context of behavior-based networks, model transformation and model
checking approaches were realized [AKRB13]. An experimental plugin adds support for
the URBIScript language.

10http://beru.univ-brest.fr/˜singhoff/cheddar
11http://racket-lang.org

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

2.3 Separation of Concerns

With system complexity and maintainability being major issues in robotics, separation
of concerns is an important design principle. In this context, especially the Orocos au-
thors propose the “4C Model” for robotic components (as e.g. mentioned in [SB11]) –
a variation of the concept originally introduced by Radestock et al. [RE96], as Schlegel
et al. explain in an introduction to these topics [SSL12]. It proposes “[...] dividing the
specification and implementation of distributed systems into four parts – communication,
computation, configuration and coordination” [RE96].

Having encountered maintainability issues, Makarenko et al. [MBK07] discuss this topic
regarding the Orca 2 framework and propose a clear separation of concerns with respect to
(1) Driver and Algorithm Implementations, (2) Communication Middleware, and the (3)
Robotic Software Framework. This good practice of separating framework-independent
code from framework-dependent code is increasingly promoted [Roc, QCG+09, RFB13].
Not being tied to any framework, libraries such as OpenCV12 or the PCL are (re)used in
research institutions around the world.

Furthermore, code complexity and maintainability are correlated. Simple, independent
artifacts with compact source code require less maintenance effort and are less likely to
contain programming errors. Makarenko et al. [MBK07] discuss the many benefits of
frameworks having a slim and clearly structured code base – especially regarding devel-
opment and maintainability of a framework itself. Some authors explicitly target minimal-
ism [HB13].

A clear separation of concerns is beneficial with respect to virtually all evolution qualities
of software systems – maintainability in particular. Reusability and portability of software
artifacts are also increased significantly.

In consequence, we implemented FINROC in a slim and highly modular way [RFB13].
As illustrated in fig. 513, it consists of many small independent software entities. RRLIBs
are framework-independent libraries. Functionality that is not needed in every application
is generally implemented in optional plugins. This way, FINROC can be tailored to the
requirements of an application. Plugins can contain almost anything, including communi-
cation port types (data ports, rpc ports, blackboard), component types (structure, ib2c),
network transports (tcp, ros), or support for DSLs (urbiscript). With only communication
plugins, FINROC could be configured as a plain middleware.

2.4 Programming Languages

The choice of programming language has a major impact on performance efficiency and
on virtually all evolution qualities of a system. Suitability for real-time implementations,
development effort, and the availability of reusable software artifacts are further factors

12http://opencv.org/
13Lines of code were counted using David A. Wheeler’s ’SLOCCount’

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

util (899 SLOC)

design_patterns (790 SLOC)

time (692 SLOC) xml (670 SLOC)

logging (1.4 kSLOC)

serialization (3.1 kSLOC)

rtti (1.9 kSLOC)concurrent_containers (2.1 kSLOC)

bu�er_pools (602 SLOC)

core
(3.9 kSLOC)

data_ports (6.0 kSLOC)

parameters (1.9 kSLOC)

scheduling (567 SLOC)

runtime_construction (2.1 kSLOC)

structure (833 SLOC)

blackboard

(1.8 kSLOC)

tcp

(4.2 kSLOC)

urbiscript

(1.0 kSLOC)

RRLIBs

Core

Plugins

ib2c

(1.3 kSLOC)

thread (1.6 kSLOC)

rpc_ports

(1.9 kSLOC)

ros

(1.3 kSLOC)

Figure 5: FINROC’s modular core with a selection of plugins

to consider. Most popular robotic frameworks have implementations in C or C++ – a
good choice with respect to many of these aspects. Increased development effort and
its difficulty level are arguably drawbacks. ROS, for instance, is partly implemented in
Python. Notably, aRDx has mainly been implemented in the scripting language Racket
(see chapter 2.2). According to Bäuml [Bäu13], “Racket performs only about 5x slower
than C/C++ and about 10x faster than Python”. Thus, small parts of performance-critical
functionality are implemented in C/C++. Apart from this, many advantages for the robotics
domain are listed – including maintainability, productivity, and the embedding of DSLs.

Various frameworks support multiple programming languages for the development of
robot control systems – e.g. ROS or openRTM-aist. Java and Python are often an option.
Microsoft Robotics Developer Studio allows any .NET language to be used. CLARAty is
explicitly separated into a functional and a decisional layer. The latter is programmed in
LISP. As Klotzbücher et al. [KSB10] point out, using embedded scripting languages im-
proves robustness of a system, as errors in script code do not affect unrelated components
in the same process.

Multi-language approaches can be realized by implementing the complete framework in
every supported language or by creating bindings in these languages to a single imple-
mentation – often based on C++. The former is more portable, but also leads to increased
maintenance effort. Usually, frameworks that do not use an IDL to specify data types also
do not support several general-purpose programming languages (see chapter 2.1.2).

With respect to FINROC, we decided to create full, native implementations in C++11 and
Java – initially using an automated co-development process. We chose C++11 because
its features support making implementations safer, shorter and more efficient compared
to C++03. It, however, requires a modern C++ compiler – somewhat limiting portability.
Data types required in both languages need to be implemented in both unless a type’s string
or XML representation is sufficient. The Java version is suitable for Android platforms.

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

2.5 Implementation

In the mobile robotics domain, software performance is a critical factor – as this deter-
mines required computing resources and battery power. Regarding frameworks, a key
issue is sharing data among connected software components and threads. The components
can be located in the same process (intra-process), on the same computing node (inter-
process), or on different computing nodes (inter-host). As Nesnas [Nes07] points out, “an
application framework must pay particular attention to avoiding unnecessary copying of
data [...]”.

Efficiency also influences latency and scalability – imposing limits on the maximum num-
ber of components that are feasible (see chapter 2.1.3). Locking can be an even bigger
issue with respect to latency and scalability. Locking buffers exclusively from different
components quickly causes significant, varying delays.

Support for meeting hard real-time requirements in component interaction is another im-
portant feature – especially for low-level control loops and safety-critical systems. Not
being limited to a single component for real-time tasks increases reusability – e.g. with
separate components for accessing sensors and actuators in control loops. Several frame-
works support this, including OpenRTM-aist, Orocos, OPRoS, SmartSoft, GenoM3, aRDx
and MCA2. For real-time implementations, unboundedly varying delays must be avoided.
Lock-free implementations are advantageous in this respect.

Zero-copy transport mechanisms, typically use either ring buffers or pools of buffers with
reference counters. The former is simpler to implement, while the latter is more flexible.
Hammer et al. [HB13] present an efficient implementation based on ring-buffers that is
zero-copying even for inter-process communication. In [RFB13], we explain FINROC’s
efficient, lock-free, zero-copy intra-process transport based on buffer pools.

Due to the modular application style, using a framework will always induce computational
overhead compared to a perfectly engineered monolithic solution. However, frameworks
such as Orocos show that computational overhead can be low, despite a relatively loose
coupling. In practice, as soon as it comes to buffer management or multithreading, we
often observe that framework-based solutions actually outperform custom standalone code
– sometimes drastically. This is due the fact that efficient, lock-free buffer management is
complex to implement.

High bandwidth, low latency, low computational overhead, robustness, and support for
quality of service (QoS) are desirable attributes of a network transport used for distributed
robotic systems. Interoperability and security can be further requirements. As discussed
in chapter 2.1, several frameworks are independent from a specific network-transport.
This is beneficial with respect to varying requirements of applications. Regarding the
primary transport mechanism, some frameworks rely on custom TCP-based implementa-
tions tailored to their requirements. This includes ROS, Player and MCA2. Others rely on
professional middleware packets based on standards such as CORBA [Obj98] or DDS14.
ICE [Hen04] is a popular middleware product not based on these standards. OpenRTM-
aist, Orocos, OPRoS and SmartSoft are frameworks with a CORBA implementation, for

14http://portals.omg.org/dds

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

instance. Several frameworks are interoperable with ROS – including FINROC [ARHB13].
Some transport-independent frameworks such as Orocos and GenoM3 can use the ROS
transport for all components.

3 Conclusion

There is a lot of interesting research in the context of robot control frameworks. The con-
tribution of this paper is to give an overview on activities in this broad scope, present im-
portant design areas and principles, as well as relating them to software quality attributes.
Numerous robotic frameworks have been developed. The projects referenced in this paper
are only a small subset of relatively recent work. With FINROC we believe to have made an
interesting contribution to this research. Regarding future activities, questions of suitable
measures in a framework to support or even guarantee certain quality attributes of robot
control systems are a relevant direction of research – as we discuss in [RFB13].

Acknowledgments Funding by the German Ministry of Education and Research (grant
01IC12S01W, Software-Cluster project SINNODIUM) is gratefully acknowledged.

References

[AKRB13] Christopher Armbrust, Lisa Kiekbusch, Thorsten Ropertz, and Karsten Berns. Tool-
Assisted Verification of Behaviour Networks. In Proceedings of the 2013 IEEE Inter-
national Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany,
May 6-10 2013.

[ARHB13] Michael Arndt, Max Reichardt, Jochen Hirth, and Karsten Berns. Requirements for
Interoperability and Seamless Integration of Different Robotic Frameworks. In Davide
Brugali, editor, Proceedings of the eighth full-day Workshop on Software Development
and Integration in Robotics (SDIR VIII), in conjunction with the IEEE International
Conference on Robotics and Automation (ICRA), pages 38–40, Karlsruhe, Germany,
May 2013.

[ASK08] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. A Software Platform for Compo-
nent Based RT-System Development: OpenRTM-Aist. In Stefano Carpin, Itsuki Noda,
Enrico Pagello, Monica Reggiani, and Oskar von Stryk, editors, Simulation, Modeling,
and Programming for Autonomous Robots, volume 5325 of Lecture Notes in Computer
Science, pages 87–98. Springer Berlin / Heidelberg, 2008.

[Bai07] Jean-Christophe Baillie. Design Principles for a Universal Robotic Software Platform
and Application to URBI. In 2nd National Workshop on Control Architectures of Robots
(CAR’07), pages 150–155, Paris, France, May 31-June 1 2007.

[Bäu13] Berthold Bäuml. One for (Almost) All: Using a Modern Programmable Programming
Language in Robotics. In Davide Brugali, editor, Proceedings of the eighth full-day
Workshop on Software Development and Integration in Robotics (SDIR VIII), in con-
junction with the IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, May 2013.

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

[BKM+07] Alex Brooks, Tobias Kaupp, Alexei Makarenko, Stefan B. Williams, and Anders
Orebäck. Orca: A Component Model and Repository. In Brugali [Bru07].

[Bru07] Davide Brugali, editor. Software Engineering for Experimental Robotics, volume 30
of Springer Tracts in Advanced Robotics. Springer - Verlag, Berlin / Heidelberg, April
2007.

[FHC97] Sara Fleury, Matthieu Herrb, and Raja Chatila. GenoM: A Tool for the Specification and
the Implementation of Operating Modules in a Distributed Robot Architecture. In In
International Conference on Intelligent Robots and Systems, pages 842–848, Grenoble,
France, September 7-11 1997.

[HB13] Tobias Hammer and Berthold Bäuml. Raw Performance of Robotic Software Middle-
ware: A Comparison and aRDx’s New Realtime Communication Layer. In Davide
Brugali, editor, Proceedings of the eighth full-day Workshop on Software Development
and Integration in Robotics (SDIR VIII), in conjunction with the IEEE International
Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013.

[Hen04] Michi Henning. A New Approach to Object-Oriented Middleware. IEEE Internet
Computing, 8(1):66–75, 2004.

[JLJ+10] Choulsoo Jang, Seung-Ik Lee, Seung-Woog Jung, Byoungyoul Song, Rockwon Kim,
Sunghoon Kim, and Cheol-Hoon Lee. OPRoS: A New Component-Based Robot Soft-
ware Platform. ETRI Journal, 32:646–656, 2010.

[KSB10] Markus Klotzbücher, Peter Soetens, and Herman Bruyninckx. OROCOS RTT-Lua: an
Execution Environment for building Real-time Robotic Domain Specific Languages. In
International Conference on Simulation, Modeling and Programming for Autonomous
Robots (SIMPA), pages 284–289, Darmstadt, Germany, November 15-16 2010.

[MBK07] Alexei Makarenko, Alex Brooks, and Tobias Kaupp. On the Benefits of Making
Robotic Software Frameworks Thin. In IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2007), San Diego, California, USA, October 29-
November 2 2007.

[MPH+10] Anthony Mallet, Cédric Pasteur, Matthieu Herrb, Séverin Lemaignan, and François Fe-
lix Ingrand. GenoM3: Building middleware-independent robotic components. In ICRA,
pages 4627–4632, 2010.

[Nes07] Issa A. Nesnas. The CLARAty Project: Coping with Hardware and Software Hetero-
geneity. In Brugali [Bru07].

[NFBL10] Tim Niemueller, Alexander Ferrein, Daniel Beck, and Gerhard Lakemeyer. Design
Principles of the Component-Based Robot Software Framework Fawkes. In Proc. of
Second International Conference on Simulation, Modeling, and Programming for Au-
tonomous Robots, Lecture Notes in Computer Science, Darmstadt, Germany, 2010.
Springer.

[Obj98] Object Management Group, Inc., Framingham, Massachusetts, USA. The Common
Object Request Broker: Architecture and Specification – Version 2.2, July 1998.

[Obj12] Object Management Group, Inc., Framingham, Massachusetts, USA. Robotic Technol-
ogy Component (RTC) – Version 1.1, September 2012.

[OSA+13] Francisco J. Ortiz, Francisco Sánchez, Diego Alonso, Francisca Rosique, and Carlos C.
Insaurralde. C-Forge: a Model-Driven Toolchain for Developing Component-Based

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

Robotics Software. In Davide Brugali, editor, Proceedings of the eighth full-day Work-
shop on Software Development and Integration in Robotics (SDIR VIII), in conjunction
with the IEEE International Conference on Robotics and Automation (ICRA), Karl-
sruhe, Germany, May 2013.

[QCG+09] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating System. In
IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May
12-17 2009.

[RE96] Matthias Radestock and Susan Eisenbach. Coordination in Evolving Systems. In Inter-
national Workshop on Trends in Distributed Systems (TreDS ’96): CORBA and Beyond,
pages 162–176, Aachen, Germany, October 1-2 1996.

[RFB13] Max Reichardt, Tobias Föhst, and Karsten Berns. On Software Quality-motivated De-
sign of a Real-time Framework for Complex Robot Control Systems. In Proceedings
of the 7th International Workshop on Software Quality and Maintainability (SQM), in
conjunction with the 17th European Conference on Software Maintenance and Reengi-
neering (CSMR), Genoa, Italy, March 5 2013.

[Roc] The Robot Construction Kit. http://rock-robotics.org/.

[SAG01] Kay-Ulrich Scholl, Jan Albiez, and Bernd Gassmann. MCA- An Expandable Modular
Controller Architecture. In 3rd Real-Time Linux Workshop, Milano, Italy, 2001.

[SB11] Ruben Smits and Herman Bruyninckx. Composition of complex robot applications via
data flow integration. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 5576–5580, May 2011.

[Soe06] Peter Soetens. A Software Framework for Real-Time and Distributed Robot and Ma-
chine Control. PhD thesis, Department of Mechanical Engineering, Katholieke Univer-
siteit Leuven, Belgium, May 2006.

[SS11] Andreas Steck and Christian Schlegel. Managing execution variants in task coordina-
tion by exploiting design-time models at run-time. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, pages 2064–2069, 2011.

[SSL12] Christian Schlegel, Andreas Steck, and Alex Lotz. Robotic Systems - Ap-
plications, Control and Programming, chapter 23. Robotic Software Sys-
tems: From Code-Driven to Model-Driven Software Development. InTech,
http://www.intechopen.com/books/robotic-systems-applications-control-and-
programming/robotic-software-systems-from-code-driven-to-model-driven-software-
development, 2012. ISBN: 978-953-307-941-7, InTech, DOI: 10.5772/25896.

[VGH03] R. Vaughan, B. Gerkey, and A. Howard. On device abstractions for portable, reusable
robot code. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003), pages 2121–2427, Las Vegas, Nevada, USA, October 27-31 2003.

[WNW12] Johannes Wienke, Arne Nordmann, and Sebastian Wrede. A Meta-Model and
Toolchain for Improved Interoperability of Robotic Frameworks. In SIMPAR2012
- SIMULATION, MODELING, and PROGRAMMING for AUTONOMOUS ROBOTS.
Springer Heidelberg Berlin, 2012.

[WW11] Johannes Wienke and Sebastian Wrede. A middleware for collaborative research in
experimental robotics. In System Integration (SII), 2011 IEEE/SICE International Sym-
posium on, pages 1183–1190, 2011.

Copyright GESELLSCHAFT FÜR INFORMATIK E.V. (GI) · AHRSTRAßE 45 · 53175 BONN

Max Reichardt, Tobias Föhst and Karsten Berns.

Design Principles in Robot Control Frameworks.

September 16-20, 2013 - Koblenz, Germany
Informatik 2013- Springer Lecture Notes in Informatics (LNI).

